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Machine Learning in Nutshell
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What is machine?

“Machine learning research is part of research on artificial
intelligence,seeking to provide knowledge to computers through
data,observations and interacting with the world.That acquired
knowledge allows computers to correctly generalize to new
settings.”
Yoshua Bengio
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Why we need ML?

• Significant amounts of data are available or can be generated
(either beforehand or dynamically)

• Other (analytical) solutions are too slow or infeasible

• Human expertise is absent or unexplainable

• Solutions change over time or need to be adapted

• ....

From DD3359-RL course KTH
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What is DL?

Deep learning allows computational models,that are composed of
multiple processing layers to learn representations of data, with
multiple levels of abstraction.
Y.LeCun
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Generalization vs Structuring

• Supervised learning tries to generalize over an massive amount
of structured data.

• Unsupervised learning tries to learn the structure of a
massive amount of data.
I Clustering tries to bring together items with high similarity of

invarian features.
I Density estimation tries to model a probability distribution of

the items influenced by the invariant features (Central Limit
Theorem to be considered).

I Dimensionality reduction find the a latent space where the
invariant features prevail.

• Semi-/Weakly- supervised learning tries to learn the scarcely
labeled data.

• Individual data is assumed to be composed of core content
which is invariant from the acquisition conditions and the
non-core content dependent acquisition conditions.
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Other type
• Reinforcement learning:Trying to generalize of a series of

sequential observations from an enviornment by learning a
policy generates a given action from the state, such as the
cummulative rewards (sparse in time) are maximized.

• More biologically plausiblea approach.
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Machine Learning in practice.

Treating the concept as a mathematical computable entity,and
sampling a lot of data from the this entity,and use these empirical
data as a proxy.
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Key Mathematical Ingredients
• Probability: the calculus of uncertainity computation.
• Calculus: the science of continuity that is at continous
change.

• Algebra: the science of multidimensional hyper-space.
• Graphs: the science ontological entities.
• ....
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Feature selection
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Which camera is better one

Shlens et al 2013
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Why we need feature selection

• reducing overfitting

• overcoming the curse of dimensionality

• shorter training time

• improve the interpretability of the methods

• Other?
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Feature selections, Chen et al

• Let X ⊂ Rd be the domain of covariates.

• Let Y ⊂ 0, 1 be the domain of responses (labels).

• Given n i.i.d data pairs {(xi , yi ),= 1, 2, .., d}, with unknown
distribution P(X,Y)

• Select a subset of X that best predict Y.
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Concrete autoencoder,Balin et al 2019
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Concrete autoencoder

• Utilization of autoencoders, for distillation of predictive
features.

• Latent space could be any type of mathematical entity.

• Reparameterization enables back-propagation in random
variables.

• Concrete autoncoder is still an autoencoder.
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Slides taken from Nando.D.F course Machine Learning: 2014-2015
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Concrete distribution,Maddison et al 2017

• Sample and array gj from a Gumbel distribution F (x ;µ, β) = e−e
− x−µ

β

• Relaxation of the discrete variables mj = e
(log(αj )+gj )/λ∑d

k=1
e(log(αk )+gk )λ

• One-hot encoding distribution mj = 1,with, probability =
αj∑d

k=1
αk

• Temperature modulation λ(epoch) = λinitial

{
λfinal
λinitial

}{ epoch
TotalNrEpochs

}
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Variational Information Maximization for Feature Selection Gao et
al
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Entropy

Entropy : H(X ) = −
∑

i

pX (xi ) ∗ log(pX (xi )) (1)
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Mutual Information

https://colah.github.io/

• I (X ) = H(X ) + H(Y )− H(X ,Y )

• VI (X ,Y ) = H(X ,Y )− I (X ,Y )

• DKL(PX ||QX ) =
∫ +∞
−∞ p(x)log

{
p(x)
q(x)

}
dx

22 / 45
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Probabilistc Graphical Model

• Bayes : P(θ|Data) = P(θ,Data)
P(Data) = P(θ)∗P(Data|θ)

P(Data)

• P(X |Y ) = P(X ) => P(X ,Y ) = P(X )P(Y )
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Feature selections dependence perspective

• We would like a subset T of size (m)
s.t the remaining S T are conditionally independent given T .

• This dependency is quantified by Q : 2d → [0,∞) such that:
Q(T)=0 iff XS T ⊥ Y |XT

Q(T ) ≥ Q(S) whenever T ⊂ S

minT :|T |=mQ(T ) (2)
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Feature just random variables

• T = argmaxT

{
I{(x1, x2, ...xT ), y}

}
NP-hard direct solution

• Forward Feature Selection :tstep=t = argmax
i 6∈St−1

{
I (x

St−1∪i
: y)

}
• I (x

St−1∪i
: y) = I (x

St−1 : y) + I (xi : y|x
St−1 )

• I (x
St−1∪i

: y) = I (x
St−1 : y) + I (xi : y)− I (xi : x

St−1 ) + I (xi : x
St−1 |y)

• = I (x
St−1 : y) + I (xi : y)− (H(x

St−1 )− H(x
St−1 |xi )) + (H(x

St−1 |y)− H(x
St−1 |xi , y))

• t = argmax
i 6∈St−1

{
I (xi : y) + H(x

St−1 |xi )− H(x
St−1 |xi , y)

}
• H(x

St−1 |xi ) ≈
∑t−1

k=1
H(xk |xi )

• H(x
St−1 |xi , y) ≈

∑t−1
k=1

H(xk |xi , y)

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables

• Assumption1: Feature Independent : P(x
St−1 |xi ) =

∏t−1
k=1

P(xk |xi )

• Assumption2: Class-Conditioned Independent
: P(x

St−1 |xi , y) =
∏t−1

k=1
P(xk |xi , y)

• These have only one common structure fulfillment.

• Contradiction when both are met:I (Xi : Y ) > I (X1, X2, ..., Xt−1:Y )
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Feature just random variables

• I (x, y) ≥ H(x)+ < ln[q(x|y)] >p(x,y)

• S = argmaxS{H(xS )+ < ln(q(xS |y)) >p(xs ,y)
)}

• Swap x with y: I (x, y) ≥ H(y)+ < ln[q(y|x)] >)p(x,y) =< ln

{
q(y|x)

p(y)

}
>p(x,y)

• S∗ = argmaxS

{
< ln

{ q(y|xS )

p(y)

}
>p(xs ,y)

}
• q(y|xs ) =

q(xs ,y)
q(xs )

=
q(xs ,y)p(y)

q(xs )
=

q(xs ,y)p(y)∑
y
′ q(xS |y

′
)p(y
′
)

• I (xs , y) ≥
〈

ln

{
q(y|xs )

q(xs )

}〉
p(xs ,y)

= ILB (xs : y)

• I (xs , y)− ILB (xs : y) =
〈

KL(p(y|xs )||q(y|xs ))
〉

p(xs )

Not intended to be understood at a single slide. Check reference for further understanding.
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Variational feature selection under auto-regressive
decomposition

• q(xs |y) = q(x1|y)
∏T

t=2 q(xt |xT≥t , y)

• ILB (xs : y) = 1
N

∑
xk ,yk ln

q̂(xk
S |y

k )

q̂(x
(k)
S

)

• MI assesses the informativeness of features

• It requires a lot of observation if the dimensionality of the
data is very high
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Kernel Feature Selection via Conditional Covariance Minimization
Chen et al

29 / 45



Feature selections prediction perspective

• F is a class of functions from X to Y.

• L is a loss function defined by the user (MSE).

• Prediction error: εF = inff ∈F EX ,Y L(Y , f (X ))

• Solve the problem:

minT :|T |≤mεF (XT ) = minT :|T |≤minff ∈F EX ,Y

{
L(T , f (X ))

}
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Correlation vs Association

Altman et al
• Correlation: How much variance is explained→ ρX,Y =

cov(X,Y )
σX ∗σY

• Covariance:X and Y co-vary,→ cov(X , Y ) = ρX,Y ∗ σX ∗ σY
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Kernel trick

k(xi , xj ) = ϕ(xi )
Tϕ(xj ) (3)

ϕ : x → ϕ(x) (4)

32 / 45



Conditional Covariance Operator(CCO)

• CCO computes a measure of the conditional dependency for
random variables.

• (Hx,Kx) and (Hy,Ky) the reproducible kernel Hilbert space
(RKHSs) of functions of X and Y respectively.

• (X,Y) a random array on (X xY ) with distribution P(X,Y)

• The cross-covariance operator associated with the pair (X,Y)
is the mapping

∑
X ,Y : HX− > HY

• s.t: EX ,Y
{

(f (X )− EX [f (X )])(g(Y )− EY [g(Y )])
}

:
∀g ∈ HY , f ∈ HX
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Conditional Covariance Operator(CCO)

• There exists unique bounded operator VY ,X ,s.t:

• < g ,
∑

Y X f >Hy =
∑

YX = (
∑

YY )1/2VY X (
∑

XX )1/2

• CCO:
∑

XX |Y =
∑

YY − (
∑

YY )1/2VY X VX Y (
∑

XX )1/2

• CCO captures the conditional variance of Y given X

• L2(PX ) is the space of all square-integrable1 functions on X

• If HX + R is dense in L2(PX )

• < g ,
∑

XX |X g >HY
= E [varY |X [g(Y )|X ]], ∀g ∈ HY

• The residual error of g(Y ) (where Y is part of Hy) can be
characterized by the CCO

• < g ,
∑

YY |X g >Hy =
inff ∈Hx EX .Y {(g(Y )− EY [g(Y )])− (f (X )− EX [f (X )])}

Not intended to be understood at a single slide. Check reference for further understanding.

1
∫ +∞
−∞ |f (x)|

2dx <∞
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Proposed method

• Let (H1, k1) be the RKHS X ⊂ Rd

• Let T ⊆ [d ] be a subset of features with cardinality m ≤ d

• We define kT
1 (x , x̃) = k1(xT , x̃T )∀x , x̃ ∈ X

• k1 is permutation(π) invariance
∀x , x̃ ∈ X , k1(x , x̃) = k1(xπ, x̃π)2

• trace[
∑

XX |Y ]3 interpreted as a dependency measure.

• (H,k) is characteristic if P → EP [k(X , :)] is 1to1 map.

• If k is bounded→ H + R is dense in L2(P),∀P.

2(xπ1 , xπ2 , ..xπd )as, xπ
3trace[A(NxN)] =

∑N
i=1 A(i,i)
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Proposed method

• L14: if k1 is bounded and characteristic→ k̃1 is characteristic

• TH25: if (H1, k1)and(H2, k2) are characteristic:∑
YY |X ≤

∑
YY |XT∑

YY |X =
∑

YY |XT
: iff : Y ⊥ X |XT

• C36:If (H1, k1) is characteristic,
{y ∈ [0, 1] : where

∑
i yi = 1} ⊂ Rk , and (H2, k2) includes the

identity function on Y, then we have:
Tr(
∑

YY |X ) ≤ Tr(
∑

YY |XT
),∀T

Tr(
∑

YY |X ) = Tr(
∑

YY |XT
) : iff : Y ⊥ X |XT

• Univariate Objective:minT :|T |=mQ(T ) = Tr(
∑

YY |XT
)

4L→Lemma
5TH→ Theorem
6C→Corollari
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Proposed method

• C4:Let:
∑

YY |XT
denote CCO of (XT ,Y )in (H̃1, k̃1)

denote: Fm = H̃1 + R = f + c : f ∈ H̃1, c ∈ R
then: Tr(

∑
YY |XT

) = εFm (XT ) = inff ∈F EX ,Y (Y − f (XT ))2

• Given n samples (x1, y1), (x2, y2), ...(xn, yn) the empirical
estimate is given by:
Tr( ˜∑

YY |XT

(n)
) = trace

{
˜∑
YY

(n) − ˜∑
Y ,XT

(n)
[ ˜∑

XT ,YT

(n)
+ εI ] ˜∑

XT Y
(n)
}

Tr( ˜∑
YY |XT

(n)
) = εntrace{GY [GX + nεn In ]}

where GX = (In − 1
n

I ∗ I T )KXT
(In − 1

n
I ∗ I T )

and GY = (In − 1
n

I ∗ I T )KYT
(In − 1

n
I ∗ I T )

• WLG: trace[GY (GXT
+nεn In)

−1] = trace[YY T (GXT
+nεN IN )−1] = trace[Y T (GXT

+nεN IN )−1Y ]

• Univariate Objective:min|T |=m
˜Q(n) = Y T (GXT

+ nεN IN)−1Y
where Y = (y1, y2, ..., yn) is a n-dimensional vector.

Not intended to be understood at a single slide. Check reference for further understanding.
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∑
YY |XT

) = εFm (XT ) = inff ∈F EX ,Y (Y − f (XT ))2

• Given n samples (x1, y1), (x2, y2), ...(xn, yn) the empirical
estimate is given by:
Tr( ˜∑

YY |XT

(n)
) = trace

{
˜∑
YY

(n) − ˜∑
Y ,XT

(n)
[ ˜∑

XT ,YT

(n)
+ εI ] ˜∑

XT Y
(n)
}

Tr( ˜∑
YY |XT

(n)
) = εntrace{GY [GX + nεn In ]}

where GX = (In − 1
n

I ∗ I T )KXT
(In − 1

n
I ∗ I T )

and GY = (In − 1
n

I ∗ I T )KYT
(In − 1

n
I ∗ I T )

• WLG: trace[GY (GXT
+nεn In)

−1] = trace[YY T (GXT
+nεN IN )−1] = trace[Y T (GXT

+nεN IN )−1Y ]

• Univariate Objective:min|T |=m
˜Q(n) = Y T (GXT

+ nεN IN)−1Y
where Y = (y1, y2, ..., yn) is a n-dimensional vector.
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Optimization

• argminw : Y T (GXw�X
+ nεN IN)−1Y 7

subject to: wi ∈ {0, 1}, i = 1, .., d
where I T w ≤ m

7� => Hadamard
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Optimization, w relaxation

• argminw : Y T (GXw�X
+ nεN IN)−1Y

subject to 0 ≤ wi ≤ 1, i = 1, .., d
where I T w ≤ m
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Optimization,Removing the last inequality

• argminw : Y T (GXw�X
+ nεN IN)−1Y +λ1[I T w −m]

subject to 0 ≤ wi ≤ 1, i = 1, .., d
where λ1 ≥ 0
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Optimization, Removing the matrix inversion

• argminw ,α : α ∗ y + ||(GXw�X
+ nεN IN)α + y ||22

subject to 0 ≤ wi ≤ 1, i = 1, .., d
where I T w ≤ m and α = (GXw�X

+ nεN IN)−1y
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Optimization, kernel approximation

• argminw : Y T (GXw�X
+ nεN IN)−1 Y

subject to 0 ≤ wi ≤ 1, i = 1, .., d
where I T w ≤ m
(GXw�X

+ nεN IN)−1 ≈ 1
εnn I − 1

ε2nn2 V (ID + 1
εnn V T

w Vw )−1Vw

(GXw�X
+ nεN IN)−1 ≈ 1

εnn (I − Vw (V T
w Vw + εnbID)−1V T

w )
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