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“Machine learning research is part of research on artificial
intelligence,seeking to provide knowledge to computers through
data,observations and interacting with the world.That acquired
knowledge allows computers to correctly generalize to new
settings.”

Yoshua Bengio
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What is DL? racefox

Deep learning allows computational models,that are composed of
multiple processing layers to learn representations of data, with
multiple levels of abstraction.

Y.LeCun
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Why deep learning

Deep learning
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Amount of data

How do data science techniques scale with amount of data?
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® Supervised learning tries to generalize over an massive amount
of structured data.

® Unsupervised learning tries to learn the structure of a
massive amount of data.

» Clustering tries to bring together items with high similarity of
invarian features.

» Density estimation tries to model a probability distribution of
the items influenced by the invariant features (Central Limit
Theorem to be considered).

» Dimensionality reduction find the a latent space where the
invariant features prevail.

* Semi-/Weakly- supervised learning tries to learn the scarcely
labeled data.

* Individual data is assumed to be composed of core content
which is invariant from the acquisition conditions and the
non-core content dependent acquisition conditions.
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Olier e racefox
* Reinforcement learning: Trying to generalize of a series of
sequential observations from an enviornment by learning a
policy generates a given action from the state, such as the
cummulative rewards (sparse in time) are maximized.

* More biologically plausiblea approach.

-

Environment

Action

Rewar
Interpreter

c®
State \L:l'-‘)

8/45



Machine Learning in practice. racefox

Treating the concept as a mathematical computable entity,

9/45



Machine Learning in practice. racefox

Treating the concept as a mathematical computable entity,and
sampling a lot of data from the this entity,

9/45



Machine Learning in practice. racefox

Treating the concept as a mathematical computable entity,and
sampling a lot of data from the this entity,and use these empirical
data as a proxy.
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Key Mathematical Ingredients racefox

* Probability: the calculus of uncertainity computation.

Impossible  Unlikely  Even Chance Likely Certain

Y Y y
o A A 1

= JJ
o JIJ

1-in-6 Chance 4-in-5 Chance 1045
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change.
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* Graphs: the science ontological entities.

10/45



racefox

Feature selection

11/45



racefox

12/45



Which camera is better one racefox

camera B ‘
< AN ' camera C

camera A

Shlens et al 2013
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Why we need feature selection racefox

* reducing overfitting

Values = Values . Values =
Tim:e Time
Underfitted Good Fit/Robust Overfitted
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Why we need feature selection racefox

* reducing overfitting
* overcoming the curse of dimensionality

® shorter training time

Cifar10, Resnet-56
T T T
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Iteration <10t
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* reducing overfitting

* overcoming the curse of dimensionality

® shorter training time

* improve the interpretability of the methods
* Other?

mouse, 0.46005
remote control, 0.24144
computer keyboard, 0.12748

14 /45



Feature selections, Chen et al racefox

* Let X C RY be the domain of covariates.

15 /45



Feature selections, Chen et al racefox

* Let X C RY be the domain of covariates.
* Let Y C 0,1 be the domain of responses (labels).

15 /45



Feature selections, Chen et al racefox

* Let X C RY be the domain of covariates.
* Let Y C 0,1 be the domain of responses (labels).

* Given n i.i.d data pairs {(x;,y;),=1,2,..,d}, with unknown
distribution P(X,Y)

15 /45



Feature selections, Chen et al racefox

* Let X C RY be the domain of covariates.

* Let Y C 0,1 be the domain of responses (labels).

* Given n i.i.d data pairs {(x;, yi),=1,2,..,d}, with unknown
distribution P(X,Y)

* Select a subset of X that best predict Y.
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Concrete autoencoder racefox

* Utilization of autoencoders

it < G P
" - ,
/ (2 <) /
7\
% 2 7 2 dimension \ ) % 28

Decoder
Hidden layer 2 Hidden layer 1
300 neurons. 300 neurons.

Hidden layer 2

Input layer Reconstruct layer
784 neurons.
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Concrete autoencoder racefox

* Utilization of autoencoders, for distillation of predictive
features.

Bottle top
— /

Rocks

Coarse sand —

Charcoal

Fine sand —

Cloth—

Bottle bottom ——|
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Concrete autoencoder

* Utilization of autoencoders, for distillation of predictive

features.

* Latent space could be any type of mathematical entity.
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Concrete autoencoder racefox

* Utilization of autoencoders, for distillation of predictive
features.

* Latent space could be any type of mathematical entity.

* Reparameterization enables back-propagation in random
variables.

Original form Reparameterised form

| | 1

| f | Backprop f |

| | ! | |

| ~q(zlx) | 3t/ 2. =9@xE) !

| N |

1 ® $ lat/og & x @ ~PE |

| | = 9L/do: !

i L !
: Deterministic node [Kingma, 2013]
[Bengio, 2013]

. - Random node [Kingma and Welling 2014]

[Rezende et al 2014]
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Concrete autoencoder

racefox

* Utilization of autoencoders, for distillation of predictive

features.

* Latent space could be any type of mathematical entity.

* Reparameterization enables back-propagation in random

variables.

* Concrete autoncoder is still an autoencoder.

Decoder layers

Atbitrary

Y &
A

Initialize the parameters of the concrete autoencoder.
forbe {1... B} do
Adjust temp. of Concrete dist. T = Ty(Ty /Ty )/ #
forie {1...k}do
Sample m(?) ~ Concrete(al?, )
Letu® = X -m
end for
Define U/ to be the matrix € R™** that results from
u®

Update 0« 0 = AV L, and o) = @) = AV
end for

Return: decoder f3(-) and Conerete params. o/
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Sampling from a Gawss»%iist%‘t M

e
z~N(u,o ?0‘3
P(x(\ :
%_\/@X
F VAT TS L ]
by (n

L’—“—r‘

. [T R 4
Semple 5 Vs E(K)

Slides taken from Nando.D.F course Machine Learning: 2014-2015

racefox
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Concrete distribution,Maddison et al 2017 racefox

X—p

® Sample and array gj from a Gumbel distribution F(x; 1, 8) = e~
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Concrete distribution,Maddison et al 2017

x=p

C Sam le and arra i from a Gumbel distribution F(x; u, ) = e~ €
J

Jllog(aj)+gj)/ A

® Relaxation of the discrete variables m; = ¢ = J7"577°
1T s (log(cr, ) Te )

eplei/N)
T, exp(zi/A)

& ‘ Gy ’ Gy (logal ’ logay ‘ log 013) [Gl ‘ Gy ‘ Ga]

E——I

.

=

[log @ | log @ ‘ log o

(2) Discrete(a) (b) Concrete(a, A)

racefox
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Concrete distribution,Maddison et al 2017

x=p

C Samp|e and array gj from a Gumbel distribution F(x; u, B) = e~ €

Jllog(aj)+gj)/ A

® Relaxation of the discrete variables m; = e = J7"577°
1T e (log(cr, ) Te )X

C One-hot enCOding distribution mj = 1, with, probability =

OneHot Encoding

workclass State-gov Self-emp-not-inc Private
State-gov 1 0] 0
Self-emp-not-inc 0 1 0
Private » ] 0 1
Private 0 0 1
Private 0 0 1

T
D))

racefox
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Concrete distribution,Maddison et al 2017 racefox

x=p

C Samp|e and array gj from a Gumbel distribution F(x; u, B) = e~ €

Jllog(aj)+gj)/ A

® Relaxation of the discrete variables m; = <=5 "
>d e (log (e i) +ek)

* One-hot encoding distribution m; = 1, with, probabiity = =
k=1 “k

epoch
® Temperature modulation x(epoch) = A,n,t,a,{ Lfinal }{ ToairEpachs |

Ainitial
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Variational Information Maximization for Feature Selection Gao et
al
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S racefox

HX)

0.5

0.5
PrX=1)

Entropy : H(X) = = px(xi) * log(px(xi)) (1)

i
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Mutual Information

H(X)

H(X]Y)

H(Y]X)

https://colah.github.io/

* I(X) = H(X) + H(Y) — H(X,Y)

racefox
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Mutual Information

H(X)

H(X]Y)

H(Y]X)

https://colah.github.io/

* VI(X,Y)=H(X,Y) = I(X,Y)

racefox

22/45


https://colah.github.io/

Mutual Information

H(X)

H(X]Y)

H(Y]X)

* Dii(Px||Qx) = f+oo /og{ elx)

https://colah.github.io/

q(x)

bas

racefox
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Probabilistc Graphical Model racefox

The Student Network

s0 st
i°] 0.95| 0.05
021 08

: 07
iLd°| 0.9]0.08[0.02
itdtl 051 03[ 02

* Bayes : P(f|Data) = Pfg?bziz':;) _ P(G),;k(l:‘)(zl‘)t:;aw)
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Probabilistc Graphical Model racefox

The Student Network

st
0.05
0.8

* P(X]Y) = P(X) => P(X,Y) = P(X)P(Y)
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* We would like a subset T of size (m)
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Feature selections dependence perspective racefox

* We would like a subset T of size (m)
s.t the remaining S T are conditionally independent given T.

* This dependency is quantified by @ : 2¢ — [0, 00) such that:
Q(T)=0iff Xs 7 L Y|Xr
Q(T) > Q(S) whenever T C S

minT, 11=mQ(T) (2)

24 /45
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Feature just random variables

° T = argmaxr{l{(xl,xz, ---XT)ay}}
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Feature just random variables racefox

C 9 = argmaxT{I{(xl,XQ, ...xT),y}}NP—hard direct solution

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

® Forward Feature Selection :tye,-: = argmaxiest_l{l(xst_lui :y)}

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

[ ]
Ixgi—1,,; ¢ ¥) = Hxge1 : ¥) + 10 : ylxgt—1)

Not intended to be understood at a single slide. Check reference for further understanding.
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[ ]
Ixgi—1,,; ¢ ¥) = Hxge1 : ¥) + 10 : ylxgt—1)

® Ulxge—1y; 1Y) = Hxge—1 2 y) 10 1 y) = 10 xge—1) + 1(x; : xge—1y)

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

® U(xge—1y; 1Y) = lxge—1 1 ¥) + 1(xi t ylxge—1)
® U(xge—1y; 1Y) = Hxge—1 2 y) + 105 1 y) = I(xi t xge—1) + 1(x;  xge—1ly)
® = l(xgr1 i y) + 10k 1 y) = (Hxse—1) = Hxge—11%)) + (H(xge—1ly) — H(xge—1 x5 ¥))

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

I(xgt—1.; * ¥) = l(xgt—1 : y) + 1(xi : ylxgt—1)
Ixge—1,; 1 y) = Ixge—1 1 y) + 10 1 y) — 1(xi : xge—1) + 1(x; : xge—11y)
= I(xgt—1 1 y) +1(xi 1 y) = (H(xge—1) — H(xge—11x7)) + (H(xge—11y) — H(xge—11xi, ¥))

t = argmax; e {10 5 ) + HOxge1 ) = Hlxge—a o)}

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

® argmax; st —1 {I(x,' 1y) + Hxge—11x) — H(xgt—1 \x,-,y)}

o —1
H(xgt—1xi) = XjZ1 HOxk|xi)

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables

® b= argman g {105 ) + Hosgeon ) = Hlsgioa o)}
® Hlxge—1lx) & 421 HOxklxi)

® Hlxge—1lxi,¥) & SZ1 HOxlxi» y)

Not intended to be understood at a single slide. Check reference for further understanding.

racefox
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Feature just random variables racefox

* Assumptionl: Feature Independent : p(x., 11x) = ITi22 P(xclx)

Assumption 1
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Feature just random variables racefox

* Assumption2: Class-Conditioned Independent
: P(xge—1 |xiy) = [T4z; POslxiy v)

Assumption 2
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Feature just random variables racefox

® These have only one common structure fulfillment.

(o)) (D)

Assumption 1 Assumption 2 Satisfying both Assumption I and
Assumption 2
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Feature just random variables racefox

* Contradiction when both are met:ix; : v) > 104, X, ..., Xe_1.y)

(o)) ()

Assumption 1 Assumption 2 Satisfying both Assumption I and
Assumption 2
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Feature just random variables racefox

® I(x,y) > H(x)+ < In[q(x|y)] > pxoy)

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

® () = HE+ < In[a(x19)] > pi,y)

® 5 argmaxs{H(xs)+ < In(q(xs|y)) >p()<5,y))}

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

® () = HE+ < In[a(x19)] > pi,y)

® Swapxwith - 1(x,y) = HO)+ < laly 1 >yte) =< n{ S} >0,

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables racefox

$ 5= a'g’"axs{ < /”{qy‘xs P >p(xs9) }

Not intended to be understood at a single slide. Check reference for further understanding.
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Feature just random variables

® 5= argmaxs{ < /n{qy\xs 1 > p(xs,y) }

o a(xs.y) alxs,y)p(y) _ a(xs,y)p(y)

q(xs) q(xs) Zy, alxs vy e0)

q(y|xs) =

Not intended to be understood at a single slide. Check reference for further understanding.

racefox

27 /45
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® 5= argmaxs{ < /n{qy\xs 1 > p(xs,y) }

o a(xs.y) alxs,y)p(y) _ a(xs,y)p(y)

q(xs) q(xs) Zy, alxs vy e0)

* e 2 (m{LEY  —ig(e )
P(xs,y)

Not intended to be understood at a single slide. Check reference for further understanding.

q(y|xs) =
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Feature just random variables

® 5= argmaxs{ < /n{qy\xs 1 > p(xs,y) }

a(xs.y) alxs,y)p(y) _ a(xs,y)p(y)

q(xs) q(xs) Zy, alxs vy e0)

0,) 2 (n{ SEDLY g i)
P(xs,y)

I(xs,y) = ILg(xs = y) = (KL(p(y[xs)l1a(y]%5))) 5

q(y|xs) =

xs)

Not intended to be understood at a single slide. Check reference for further understanding.

racefox
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Variational feature selection under auto—regressivemcefox

decomposition

® axly) = qCaly) [T, abxelxT>¢, ¥)

Figure 2: Auto-regressive decomposition for ¢(xsly)
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decomposition

® axly) = qCaly) [T, abxelxT>¢, ¥)

a(<K1y%)

® hplxsiy)=% Xk gk In

a6)

Figure 2: Auto-regressive decomposition for ¢(xs|y)

28/45



Variational feature selection under auto—regressivemcefox

decomposition

® axly) = qCaly) [T, abxelxT>¢, ¥)
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°
(% :y) = % Xk gk In
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Figure 2: Auto-regressive decomposition for ¢(xs|y)

* MI assesses the informativeness of features
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Variational feature selection under auto—regressiverccefox

decomposition

® axly) = qCaly) [T, abxelxT>¢, ¥)

a(<K1y%)

°
(% :y) = % Xk gk In

a6)

Figure 2: Auto-regressive decomposition for ¢(xs|y)

* MI assesses the informativeness of features

* It requires a lot of observation if the dimensionality of the
data is very high
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Kernel Feature Selection via Conditional Covariance Minimization
Chen et al
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Feature selections prediction perspective racefox

* F is a class of functions from X to Y.
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Feature selections prediction perspective racefox

* F is a class of functions from X to Y.
* L is a loss function defined by the user (MSE).
* Prediction error: er = infrepEx v L(Y, f(X))

* Solve the problem:

minT. | T1<mer(XT) = minT:T|§minffeFEX,Y{L( T, f(X))}

30/45



Correlation vs Association racefox

A Association and correlation b Correlation coefficients €  Anscombe’s quartet

Associated Not associated N .
\ 4 _.,‘.,,‘,.',,,,", ,a"" . * . Lot et
NS 0.911 0.82 0.82
'-- 4 . . . .o
. Correlated . . . St
o P : : !
. e o o [
< o aseesnenneet™ . '
00.04 0.78 1 0.82 0.82

Figure 1 | Correlation is a type of association and measures increasing or
decreasing trends quantified using correlation coefficients. (a) Scatter plots
of associated (but not correlated), non-associated and correlated variables.
In the lower association example, variance in y is increasing with x. (b) The
Pearson correlation coefficient (r, black) measures linear trends, and the
Spearman correlation coefficient (s, red) measures increasing or decreasing
trends. (c) Very different data sets may have similar r values. Descriptors
such as curvature or the presence of outliers can be more specific.
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Correlation vs Association racefox
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Correlation vs Association racefox

Altman et al
cov(X,Y)
ox*Ty

® Correlation: How much variance is explained— px y =
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Altman et al

® Covariance:X and Y co-vary, — cov(X,Y) = px,y xox *x oy
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Kernel trick racefox
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Conditional Covariance Operator(CCO) racefox

* CCO computes a measure of the conditional dependency for
random variables.
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* CCO computes a measure of the conditional dependency for
random variables.

* (Hx,Kx) and (Hy,Ky) the reproducible kernel Hilbert space
(RKHSs) of functions of X and Y respectively.

* (X,Y) a random array on (XxY') with distribution P(X,Y)
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Conditional Covariance Operator(CCO) racefox

* The cross-covariance operator associated with the pair (X,Y)
is the mapping >y y : Hx— > Hy
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Conditional Covariance Operator(CCO) racefox

* The cross-covariance operator associated with the pair (X,Y)
is the mapping ZX,Y : Hx— > Hy

* st: Ex,y {(f(X) — Ex[F(X))(s(Y) — Ev[e(Y)])} :
Vg & Hy, fe HX
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Conditional Covariance Operator(CCO) racefox

* There exists unique bounded operator Vy x,s.t:

Not intended to be understood at a single slide. Check reference for further understanding.
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* There exists unique bounded operator Vy x,s.t:
* <& yxf >H= T yx = (Z )2 Vex (X xx) 2

* CCOXxxjy = vy — vy )2 Vyx Ve (Exx )2
* CCO captures the conditional variance of Y given X

Not intended to be understood at a single slide. Check reference for further understanding.
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Conditional Covariance Operator(CCO) racefox

* [2(Px) is the space of all square-integrable! functions on X

Not intended to be understood at a single slide. Check reference for further understanding.

1f+oc x)|2dx < oo
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L?(Px) is the space of all square-integrable! functions on X
* If Hx + R is dense in L?(Px)

* < g,Zx)qxg >Hy = E[VafY|x[g(Y)|X]]7Vg € Hy

* The residual error of g(Y) (where Y is part of Hy) can be
characterized by the CCO

* < ngYY\Xg >H,=
infren, Ex v{(g(Y) — Ev[g(Y)]) — (f(X) — Ex[f(X)])}

Not intended to be understood at a single slide. Check reference for further understanding.

1f+oc x)|2dx < oo
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Proposed method racefox

* Let (Hi, k1) be the RKHS X C RY
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* Let T C [d] be a subset of features with cardinality m < d
* We define ki (x,%) = ki(xT,%T)vx,% € X

* kj is permutation() invariance
Vx, % € X, ki(x, %) = ki (X, X )?

2(xm,x@,..x”)as,x7T
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Let (H1, k1) be the RKHS X c RY
* Let T C [d] be a subset of features with cardinality m < d
* We define ki (x,%) = ki(xT,%T)vx,% € X
* kj is permutation() invariance
Vx, % € X, ki(x, %) = ki (X, X )?
. trace[ZXX|y]3 interpreted as a dependency measure.
* (H,k) is characteristic if P — Ep[k(X,:)] is 1tol map.
* If k is bounded— H + R is dense in L?(P),VP.

2(X7f1 y Xma s -~X7rd)a$, X

Strace[Awa)] = 21y Adii
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Proposed method racefox

* L1%: if ky is bounded and characteristic— k~1 is characteristic

*L—Lemma
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Proposed method racefox

* TH25: if (Hy, k1)and(Ha, kp) are characteristic:
2ovvix < 2vvixy

STH— Theorem
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2vvix S 2vvixe
Zyy|x = ZYY|XT Ciff 1Y L XXt
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Proposed method racefox

* C3%:If (Hy, k1) is characteristic,
{y €10,1] : where ). y; = 1} C Ry, and (Ha, ko) includes the
identity function on Y, then we have:
Tr(ZYY|X) < Tr(ZYY|XT)7VT

5C—Corollari
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Proposed method racefox

* Univariate Objective:miny. 71—, Q(T) = Tr(ZYY\XT)
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Proposed method racefox

* Cl:Let: 3 yy|x,denote CCO of (X7, Y)in (Hy, k1)
denote: Fm:ﬁl—i-R:f—i-c:fEI:Il,cER
then: Tr(EYY‘XT) = EFm(XT) = I'nffeFEX,y(Y = f()('r))2
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Proposed method racefox

* Given n samples (x1, 1), (x2, ¥2), -..(Xn, ¥n) the empirical
estimate is given by:
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* Given n samples (x1, 1), (x2, ¥2), -..(Xn, ¥n) the empirical
estimate is given by:
T’(ZY;\XT(H)) = fface{z~yv(") - Z;,XT(")[ZX;,YT(H) + 6’]2)27»/(")}

Tr(zv;\xT(n)) = entrace{ Gy [Gx + nenln]}
MmGX:mf%MJUMﬂM,%*ﬂ)
and Gy = (Ip — 215 1T)Ky (Ia — 215 17)
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° WLG trace[Gy(GXT+,,€n[,,)*1] = trace[YYT(GXT+neNIN)*1] = traCe[YT(GXT-%—neNIN)*lY]
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Proposed method racefox

® VVLG trace[Gy(GXT+nenln)71] = trace[YYT(GXT+neNIN)71] = trace[YT(GXT+neNIN)71Y]

* Univariate Objective:min, T|:sz”) = YT (Gx, + nenly)~tY
where Y = (y1, y2, ..., ¥n) is a n-dimensional vector.

Not intended to be understood at a single slide. Check reference for further understanding.
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Optimization racefox

° argmin,, : YT(GXW@x + nenly) Y 7

'® => Hadamard
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Optimization, w relaxation racefox

* argmin,, : YT(GXWQX + nenly)tY
subjectto0 < w; <1,i=1,..,d
where ITw < m
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Optimization,Removing the last inequality racefox

* argminy : YT (Gx,ox + nenn) 1Y+ [ITw — m]
subjectto0 < w; <1,i=1,..,d
where \1 > 0
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Optimization, Removing the matrix inversion racefox

* argminy o @ ax y + [|(Gx, . x + nenln)a +y]|§
subjectto0 < w; <1,i=1,..,d
where ITw < m and a = (Gx,ox T nenln)ty
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Optimization, kernel approximation racefox

* argminy, : YT(waex + neyly)~t Y
subjectto0 < w; <1,i=1...d
where ITw < m
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Optimization, kernel approximation racefox

* argminy, : YT(waex + neyly)~t Y
subjectto0 < w; <1,i=1...d
where ITw < m
(GXW@X ar neNIN)_l ~ e,%nl — 1 V(/D -+ i\/T\/

€2n? enn Yw Yw

)"V
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Optimization, kernel approximation racefox

* argminy, : YT(GXW®X + neyly)~t Y
subjectto0 < w; <1,i=1...d
where ITw < m
(GXwox -+ I‘IE/\//N)_:l =

(wa@x +'”eNIN)i1

€2n2 V(lp + 2V Vi) Vi

1
L
i( VeV Vi + enblp) V)

22
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racefox

Longer. Faster. Forever.
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